Indexed by:
Abstract:
Hydrogel is a kind of three-dimensional network polymer formed by chemical bond or physical cross-linking. It is widely used in the field of biomaterial because of its good biocompatibility. In this experiment, a gel-based composite material for 3D bioprinting was prepared using hyaluronic acid-methyl cellulose (HAMC) gel as carrier and nano-hydroxyapatite/collagen (nHAC). The effects of gel formulation on gel process were analyzed by in vitro gel test, rheological analysis, in vitro degradation and scanning electron microscopy. The results showed that HAMC with different mineralized collagen concentration could be rapidly gelatinized at 37 °C within 3 min. The rheological experiments showed that the HAMC-mineralized collagen had shear thinning properties suitable for 3D bioprinting. The results showed that the degradation rate was similar in the first 10 days, but the degradation rate was slower with the increase of mineralized collagen concentration. The porous structure and high porosity of the hydrogel were observed by scanning electron microscopy (SEM). The porous structure of the cross-linked sample was better. © Springer Nature Singapore Pte Ltd. 2018.
Keyword:
Reprint 's Address:
Email:
Source :
Lecture Notes in Electrical Engineering
ISSN: 1876-1100
Year: 2018
Volume: 477
Page: 935-941
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: