Indexed by:
Abstract:
This paper presents a genetic algorithm (GA) approach for parameters optimization of support vector machine, which is used for the object-oriented classification of high spatial resolution images over urban area. The proposed method is a three-step routine involves the integration of 1) image segmentation, 2) GA-based parameter optimization of Support vector machine (SVM), and 3) objected-based classification. Experiments conducted on multi-spectral Quick-Bird image fused with panchromatic image in Fuzhou city. In addition, a traditional parameter searching method, Grid algorithm, was investigated to evaluate the effectiveness of the proposed approach. The results show that our proposed GA-based approach significantly outperforms the Grid algorithm both in terms of classification accuracy and time efficiency. © 2011 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2011
Page: 348-352
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 9
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: