Indexed by:
Abstract:
This paper proposes a fast discrete-time learning algorithm for speech enhancement of single-channel noisy speech signal, based on a noise constrained least squares estimate. Unlike existing learning algorithms for the noise constrained estimate, the proposed discrete-time learning algorithm has a low complexity and fast speed. Simulation results show that the proposed discrete-time learning algorithm has a faster speed than the existing learning algorithms for speech enhancement. Moreover, the proposed discrete-time learning algorithm has a good performance in having a significant gain in SNR at colored noise. © 2014 IEEE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Year: 2014
Page: 3149-3154
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: