Indexed by:
Abstract:
In order to solve the problems in the traditional remote sensing image based on spectral information, such as low classification accuracy, different object with the same spectral features or the same object with the different spectral features, and limited sample quantity and so on, a remote sensing image classification method based on the support vector machine (SVM) including with textural features is proposed. Using Langqi Island of Fuzhou as experimental area, preprocessing and principal component analysis were made to initialize TM images, and the spectral features and GLCM-based textural features of ground objects were extracted and analyzed respectively. Then, the extraction, training and testing of samples based on the two types of features were finished for training various SVM classifiers, which were used for classifying land use in the experimental area. Through the maximum likelihood method, the BP neural network and the support vector machine (SVM), a crossed classification and contrast experiment was made to two different types of samples based on the simple spectral features and the features combined with texture respectively. The experimental results showed that the SVM classification method including textural features can effectively improve the accuracy of land use classification, and therefore it can be promoted better. © (2014) Trans Tech Publications, Switzerland.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 1660-9336
Year: 2014
Volume: 543-547
Page: 2559-2565
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 4
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: