Indexed by:
Abstract:
Automatic image annotation is a challenging problem in image understanding areas. The existing models directly extract visual features from segmented image regions. Since segmented image regions may still have multi-objects, the extractive visual features may not effectively describe corresponding regions. In order to overcome the above problems, an image annotation model based on multi-scale salient region is proposed. In this model, first, each image is segmented by using multi-scale grid-based segmentation method. Second, global contrast-based method is used to extract the saliency maps from each image region. Third, visual features are extracted from each salient region. Finally, multi-scale visual features of image regions are fused and applied to automatic image annotation. Our model can improve the object descriptions of images and image regions. Experimental results conducted on Corel 5K datasets verify the effectiveness of proposed model. © 2014 Springer Science+Business Media New York.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ISSN: 1876-1100
Year: 2014
Volume: 238 LNEE
Page: 1265-1273
Language: English
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: