Indexed by:
Abstract:
Nanocrystalline Ni-Fe alloys with different stacking fault energies were prepared by changing Fe content using pulse electrodeposition method. The microstructure and mechanical properties of the nanocrystalline Ni-Fe alloys were characterized by XRD, TEM and tensile testing. The results indicate that all the prepared Ni-Fe alloys are face-centered cubic structure, single-phase solid solution with the average grain size in the range of 12-25 nm, and the average grain size decreases with decreasing the stacking fault energy. The ultimate tension strength of the nanocrystalline Ni-Fe alloys is in the range of 1361-1978 MPa and the elongation to failure is in the range of 9.3%-13.2%. Both the ultimate tension strength and the elongation to failure increase with decreasing stacking fault energy. The increase of tensile strength is due to the fine-grain strengthening. For Ni-Fe alloy, with decreasing the stacking fault energy, the work hardening rate increases, and the plastic instability is delayed, consequently higher plasticity is gained. ©, 2015, Central South University of Technology. All right reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Chinese Journal of Nonferrous Metals
ISSN: 1004-0609
CN: 43-1238/TG
Year: 2015
Issue: 4
Volume: 25
Page: 938-944
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: