Indexed by:
Abstract:
Global land cover has been acknowledged as a fundamental variable in several global-scale studies for environment and climate change. Recent developments in global land-cover mapping focused on spatial resolution improvement with more heterogeneous features to integrate the spatial, spectral, and temporal information. Although the high dimensional input features as a whole lead to discriminatory strengths to produce more accurate land-cover maps, it comes at the cost of an increased classification complexity. The feature selection method has become a necessity for dimensionality reduction in classification with large amounts of input features. In this study, the potential of feature selection in global land-cover mapping is explored. A total of 63 features derived from the Landsat Thematic Mapper (TM) spectral bands, Moderate Resolution Imaging Spectroradiometer (MODIS) time series enhanced vegetation index (EVI) data, digital elevation model (DEM), and many climate-ecological variables and global training samples are input to k-nearest neighbours (k-NN) and Random Forest (RF) classifiers. Two filter feature selection algorithms, i.e. Relieff and max-min-associated (MNA), were employed to select the optimal subsets of features for the whole world and different biomes. The mapping accuracies with/without feature selection were evaluated by a global validation sample set. Overall, the result indicates no significant accuracy improvement in global land-cover mapping after dimensionality reduction. Nevertheless, feature selection has the capability of identifying useful features in different biomes and improves the computational efficiency, which is valuable in global-scale computing. © 2016 Informa UK Limited, trading as Taylor & Francis Group.
Keyword:
Reprint 's Address:
Email:
Source :
International Journal of Remote Sensing
ISSN: 0143-1161
Year: 2016
Issue: 23
Volume: 37
Page: 5491-5504
1 . 7 2 4
JCR@2016
3 . 0 0 0
JCR@2023
ESI HC Threshold:196
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
SCOPUS Cited Count: 17
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: