Indexed by:
Abstract:
Fe3+ and Eu3+ co-doped TiO2 (Fe3+-Eu3+/TiO2) hollow microspheres were prepared by the sol-gel method and characterized by techniques such as XRD, TEM, BET and XPS etc. Photocatalytic degradation of methylene blue (MB) was used as a probe reaction to evaluate their photocatalytic activity. The results show that the surface of SiO2 microspheres evenly coated with a layer of TiO2 and the treatment ultrasound is beneficial to improve the dispersion of the SiO2@TiO2 composite microspheres. Part of the Fe3+-Eu3+/TiO2 hollow microspheres were collapse, which were obtained through grinding before alcining the SiO2@TiO2 composite microspheres. While the better structural integrity of Fe3+-Eu3+/TiO2 hollow microspheres were prepared by grinding after calcining or without grinding. XRD and BET analysis indicate that Fe3+-Eu3+/TiO2 hollow microspheres exist in the form of anatase and have good mesoporous structure. The co-doping of Fe3+ and Eu3+ shows a synergistic effect in TiO2 hollow microspheres, which can decrease the particle size of Fe3+-Eu3+/TiO2 hollow microspheres and and increase the specific surface area. When the doping content of Fe3+ and Eu3+ is 1.0% and 0.5% respectively, Fe3+-Eu3+/TiO2 hollow microspheres exhibit the best photocatalytic activity. © 2016, BUAA Culture Media Group Ltd. All right reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Acta Materiae Compositae Sinica
ISSN: 1000-3851
CN: 11-1801/TB
Year: 2016
Issue: 7
Volume: 33
Page: 1492-1499
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2