Indexed by:
Abstract:
Anyons are quasiparticles occurring in two dimensions, whose topological properties are believed to be robust against local perturbations and may hold promise for fault tolerant quantum computing. Here we present an experiment of demonstrating the path independent nature of anyonic braiding statistics with a superconducting quantum circuit, which represents a 7-qubit version of the toric code model. We dynamically create the ground state of the model, achieving a state fidelity of 0.688±0.015 as verified by quantum state tomography. Anyonic excitations and braiding operations are subsequently implemented with single-qubit rotations. The braiding robustness is witnessed by looping an anyonic excitation around another one along two distinct, but topologically equivalent paths: Both reveal the nontrivial π-phase shift, the hallmark of Abelian 1/2 anyons, with a phase accuracy of ∼99% in the Ramsey-type interference measurement. © 2018 American Physical Society.
Keyword:
Reprint 's Address:
Email:
Source :
Physical Review Letters
ISSN: 0031-9007
Year: 2018
Issue: 3
Volume: 121
9 . 2 2 7
JCR@2018
8 . 1 0 0
JCR@2023
ESI HC Threshold:158
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: