Indexed by:
Abstract:
In this paper, an effective wavelength detection approach based on long short-term memory (LSTM) network is proposed for fiber Bragg grating (FBG) sensor networks. The FBG sensor network utilizes a model-sharing mechanism, where the whole spectral wavelength is divided into several shareable regions and spectral overlap is allowed in each region. LSTM, a representative recurrent neural network in deep learning, is applied to learn the features directly from the spectra of FBGs and build the wavelength detection model. By feeding the spectra sequentially into the well-trained model, the Bragg wavelengths of FBGs can be quickly determined under overlap. The obtained LSTM model can be repeatedly used without re-training to improve the multiplexing capability. The results demonstrate that the LSTM-based method can realize high-accuracy and high-speed wavelength detection in the spectral overlapping situations. The proposed approach offers a flexible tool to enhance the sensing capacity of FBG sensor networks. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Keyword:
Reprint 's Address:
Email:
Source :
Optics Express
Year: 2019
Issue: 15
Volume: 27
Page: 20583-20596
3 . 6 6 9
JCR@2019
3 . 2 0 0
JCR@2023
ESI HC Threshold:138
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: