• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhan, Yingying (Zhan, Yingying.) [1] | Song, Kai (Song, Kai.) [2] | Shi, Zemin (Shi, Zemin.) [3] | Wan, Chunsheng (Wan, Chunsheng.) [4] | Pan, Jinhua (Pan, Jinhua.) [5] | Li, Dalin (Li, Dalin.) [6] | Au, Chaktong (Au, Chaktong.) [7] | Jiang, Lilong (Jiang, Lilong.) [8]

Indexed by:

EI

Abstract:

Hydrotalcite-derived Ni/Mg(Al)O is promising for CH4–CO2 reforming. However, the catalysts reported so far suffer from sever coking at low temperatures. In this work, we demonstrate that a significant improvement of coke-resistance of Ni/Mg(Al)O can be achieved by fine tuning the Ni particle size through adjusting the reduction condition of catalyst. Ni particles having average size within 4.0–7.1 nm are in situ generated by reducing the catalyst at a selected temperature within 923–1073 K. Controllability of Ni particle size is related to the formation of Mg(Ni,Al)O solid solution upon hydrotalcite decomposition. It is found that the catalyst reduced at 973 K exhibits high activity, stability, and coke-resistance even at reaction temperature as low as 773 K. In contrast, the catalyst reduced at 923 K has low activity and deactivates due to Ni oxidation, while those reduced at 1023 and 1073 K suffer from sintering and severe coking. STEM and O2-TPO reveal that coke deposition is directly proportional to the Ni particle size but becomes negligible at a size below 6.2 nm. It is evidenced that a critical size of about 6 nm is required to inhibit coking effectively. CO2 temperature-programmed surface reaction indicates that the deposited carbon on small Ni particles can be easily removed by the CO2 activated at the Ni–Mg(Al)O interfaces, accounting for the better resistance to coking. © 2019 Hydrogen Energy Publications LLC

Keyword:

Aluminum compounds Carbon dioxide Catalysts Catalytic reforming Coke Magnesium compounds Nickel Particle size Sintering Surface reactions

Community:

  • [ 1 ] [Zhan, Yingying]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 2 ] [Song, Kai]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 3 ] [Shi, Zemin]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 4 ] [Wan, Chunsheng]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 5 ] [Pan, Jinhua]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 6 ] [Li, Dalin]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 7 ] [Au, Chaktong]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China
  • [ 8 ] [Jiang, Lilong]National Engineering Research Center of Chemical Fertilizer Catalyst, College of Chemical Engineering, Fuzhou University, Gongye Road No.523, Fuzhou; Fujian; 350002, China

Reprint 's Address:

  • [li, dalin]national engineering research center of chemical fertilizer catalyst, college of chemical engineering, fuzhou university, gongye road no.523, fuzhou; fujian; 350002, china

Show more details

Related Keywords:

Source :

International Journal of Hydrogen Energy

ISSN: 0360-3199

Year: 2020

Issue: 4

Volume: 45

Page: 2794-2807

5 . 8 1 6

JCR@2020

8 . 1 0 0

JCR@2023

ESI HC Threshold:132

JCR Journal Grade:2

CAS Journal Grade:3

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 35

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:1588/10124467
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1