Indexed by:
Abstract:
Characterization of the human body channel is a necessity to pave way for practical implementation of intrabody communication (IBC) in body area networks (BAN). In this paper, a circuit-coupled finite element method (FEM) based model is proposed to represent the galvanic coupling type IBC on human arm. In contrast with other models for IBC, both the finite element method and the parasitic capacitances between electrodes are taken into account in the modeling. To understand the characteristics of IBC, simulations with multiple frequencies, excitation voltages, channel lengths and values of parasitic capacitors are carried out using the model. The current density and electric field distribution in different human tissues reveal an insight into signal transmission path through the human body intuitively. The body channel gain presents a band-pass property after adding the parasitic capacitances into the model, while it performs an increasing characteristic with the frequency before the adding. Finally, a galvanic coupling IBC measurement setup is fulfilled, and the outcome shows a good agreement with the proposed model. It is indicated that the parasitic capacitances are the major factors to cause the band-pass and affect the bandwidth, and they should not be neglected in the real IBC applications. © 2020, Electromagnetics Academy. All rights reserved.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
Progress In Electromagnetics Research C
ISSN: 1937-8718
Year: 2020
Volume: 106
Page: 17-27
Cited Count:
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: