Indexed by:
Abstract:
A hybrid method integrated wavelet spectral feature with total least square algorithm for improving abundance estimation of hyper-spectral mixture pixels is proposed. The method uses the wavelet transform as a pre-processing step for the spectral feature extraction to decrease the within end-member variability, and then utilizes total least square (TLS) algorithm to capture the spectral variations between end-members. The hybrid method can take both technique advantages to reduce the impact of spectral variations with different format. Consequently, the approach provides a potential ability to reduce and tackle within end-member variation inherent in real mixture pixels, and hence to improve abundance estimation. Experiment of simulating mixture spectral data is conducted to validate the procedures, and the results demonstrate that the proposed method can reduce the abundance estimation deviation over 20% on average in the case of spectral end-member variations, as compared to that of the original hyper-spectral signals with least square estimation approach does. Comparisons with the decomposition of wavelet based features (DWT) and total least square have also been implemented, and the experiment shows the hybrid method can also improve the abundance estimation by 5%-10% than those of DWT and TLS do in terms of average RMSE.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MIPPR 2007: MULTISPECTRAL IMAGE PROCESSING
ISSN: 0277-786X
Year: 2007
Volume: 6787
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: