Indexed by:
Abstract:
In this paper, a new rough-probabilistic neural network (RSPNN) model, whereby rough set data and a probabilistic neural network (PNN) are integrated, is proposed. This model is used for structural damage detection, particularly for cases where the measurement data has many uncertainties. To verify the proposed method, an example is presented to identify both single and multi-damage case patterns. The effects of measurement noise and attribute reduction on the damage detection results are also discussed. The results show that the proposed model not only has good damage detection capability and noise tolerance, but also reduces data storage memory requirements.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCES IN STRUCTURES, PTS 1-5
ISSN: 1022-6680
Year: 2011
Volume: 163-167
Page: 2482-2487
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: