Indexed by:
Abstract:
As the development of the semantic web, RDF data set has grown rapidly, thus causing the query problem of massive RDF. Using distributed technique to complete the SPARQL (Simple Protocol and RDF Query Language) Query is a new way of solving the large amounts of RDF query problem. At present, most of the RDF query strategies based on Hadoop have to use multiple MapReduce jobs to complete the task, resulting in waste of time. In order to overcome this drawback, MRQJ (using MapReduce to query and join) algorithm is proposed in the paper, which firstly uses a greedy strategy to generate join plan, then only one MapReduce job should be created to get the query results in SPARQL query execution. Finally, a contrast experiment on the LUBM (Lehigh University Benchmark) test data set is conducted, the results of which show that MRQJ method has a great advantage in the case that the query is more complicated.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MACHINERY ELECTRONICS AND CONTROL ENGINEERING III
ISSN: 1660-9336
Year: 2014
Volume: 441
Page: 970-973
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: