Indexed by:
Abstract:
The tremendous parallel computing ability of Cloud computing as a new service provisioning paradigm encourages investigators to research its drawbacks and advantages on processing large-scale scientific applications such as workflows. The current Cloud market is composed of numerous diverse Cloud providers and workflow scheduling is one of the biggest challenges on Multi-Clouds. However, the existing works fail to either satisfy the Quality of Service (QoS) requirements of end users or involve some fundamental principles of Cloud computing such as pay-as-you-go pricing model and heterogeneous computing resources. In this paper, we adapt the Partial Critical Paths algorithm (PCPA) for the multi-cloud environment and propose a scheduling strategy for scientific workflow, called Multi-Cloud Partial Critical Paths (MCPCP), which aims to minimize the execution cost of workflow while satisfying the defined deadline constrain. Our approach takes into account the essential characteristics on Multi-Clouds such as charge per time interval, various instance types from different Cloud providers as well as homogeneous intra-bandwidth vs. heterogeneous inter-bandwidth. Various well-know workflows are used for evaluating our strategy and the experimental results show that the proposed approach has a good performance on Multi-Clouds.
Keyword:
Reprint 's Address:
Version:
Source :
2015 IEEE 29TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS
Year: 2015
Page: 1191-1198
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: