Indexed by:
Abstract:
Real-time 3D mapping with MAV (Micro Aerial Vehicle) in GPS-denied environment is a challenging problem. In this paper, we present an effective vision-based 3D mapping system with 2D laser-scanner. All algorithms necessary for this system are on-board. In this system, two cameras work together with the laser-scanner for motion estimation. The distance of the points detected by laser-scanner are transformed and treated as the depth of image features, which improves the robustness and accuracy of the pose estimation. The output of visual odometry is used as an initial pose in the Iterative Closest Point (ICP) algorithm and the motion trajectory is optimized by the registration result. We finally get the MAV's state by fusing IMU with the pose estimation from mapping process. This method maximizes the utility of the point clouds information and overcomes the scale problem of lacking depth information in the monocular visual odometry. The results of the experiments prove that this method has good characteristics in real-time and accuracy.
Keyword:
Reprint 's Address:
Email:
Source :
RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS 2016)
Year: 2016
Page: 4524-4529
Language: English
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: