Indexed by:
Abstract:
With the development of stone processing and sales, effective stone surface texture image recognition methods are needed. We proposed a new stone surface texture image recognition method based on texture and colour. We combine the following visual features: Gabor features which can well simulate the single cell sensing profile of mammalian visual neurons, The Grey-level Co-occurrence Matrices(GLCM) which describe image gray distribution characteristics and spatial location information, and HSV colour features which are consistent with human visual characteristics. In addition, for the sub-image of the stone surface texture image can contain its original image texture structure, this paper adopts the block training idea, subdividing original image into non-overlapping sub-images to multiply the number of training samples for SVM classifier. Extensive experimental results show that the proposed method has a reference value for the study of stone texture image recognition.
Keyword:
Reprint 's Address:
Source :
2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP)
Year: 2016
Page: 146-150
Language: English
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: