Indexed by:
Abstract:
Crack detection is a critical task in routine inspection of building structures. Most of the traditional crack detection methodologies are conducted by human inspectors that may submit inaccurate damage assessments. In recent years, deep learning has produced extremely promising results for various tasks. In this work, a lightweight end-to-end pixel-wise classification architecture called SegNet is employed to segment the structure surface cracks. Compared with other semantic segmentation architectures, SegNet uses pooling indices calculated in the pooling step of the encoder to perform nonlinear upsampling in the corresponding decoder, which doesn't require to learn in the upsample. In this paper, a crack image dataset collected under a variety of complex environment are utilized to train and test the SegNet model, i.e. a self-labeled dataset with 2068 bridge cracks images at the size of 1024x1024. In order to improve the generalization ability of network data augmentation is used. The experimental results show that the SegNet outperforms the traditional edge detection algorithm, such as Canny and Sobel, in the dataset. The trained SegNet model can be used to segment the cracks in images at any size with the assistant of sliding window scanning technique.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE
ISSN: 0302-9743
Year: 2019
Volume: 11909
Page: 247-254
Language: English
0 . 4 0 2
JCR@2005
Cited Count:
WoS CC Cited Count: 23
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: