Indexed by:
Abstract:
Unsupervised dimension reduction has gained widespread attention. Most of previous work performed poorly on image classification due to taking no account of neighborhood relations and spatial localities. In this paper, we propose the 'regularized convolutional auto-encoder', which is a variant of auto-encoder that uses the convolutional operation to extract low-dimensional representations. Each auto-encoder is trained with cluster regularization terms. The contributions of this work are presented as follows: First, we perform different sized filter convolution in parallel and abstract a low-dimensional representation from images cross scales simultaneously. Second, we introduce a cluster regularized rule on auto-encoders to reduce the classification error. Extensive experiments conducted on six publicly available datasets demonstrate that the proposed method significantly reduces the classification error after dimension reduction.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCES IN COMPUTER VISION, CVC, VOL 1
ISSN: 2194-5357
Year: 2020
Volume: 943
Page: 99-108
Language: English
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2