Indexed by:
Abstract:
In this work molecular dynamics simulations are carried out to investigate the defect-mediated self-assembly of graphene paper from several layers of graphene sheets with vacancy defects. Tensile and shear deformations are applied to the obtained architectures to investigate both the in-plane and the out-of-plane mechanical properties. The effect of incipient defect coverage is analyzed and super-ductility is observed in the high defect density situation. While the stiffness and strength decrease with the increasing of incipient defect coverage under in-plane deformations, they increase under out-of-plane deformations, which can be attributed to the enhanced defect-induced interlayer cross-linking. Effects of crack-like flaws are also investigated to demonstrate the robustness of this structure. Our results demonstrate that defects, which are sometimes unavoidable and undesirable, can be engineered in a favorable way to provide a new approach for graphene-based self-assembly of vertically aligned architectures with mechanical robustness and high strength.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2013
Issue: 6
Volume: 1
Page: 2002-2010
1 0 . 8 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
JCR Journal Grade:4
CAS Journal Grade:1
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: