Indexed by:
Abstract:
Traditional control methods in automatic train operation (ATO) models have some disadvantages, such as high energy consumption and low riding comfort. To alleviate these shortcomings of the ATO models, this paper presents three data-driven train operation (DTO) models from a new perspective that combines data mining methods with expert knowledge, since the manual driving by experienced drivers can achieve better performance than ATO model in some degree. Based on the experts knowledge that are summarized from experienced train drivers, three DTO models are developed by employing K-nearest neighbor (KNN) and ensemble learning methods, i.e., Bagging-CART (B-CART) and Adaboost.M1-CART (A-CART), into experts systems for train operation. Furthermore, the DTO models are improved via a heuristic train parking algorithm (HPA) to ensure the parking accuracy. With the field data in Chinese Dalian Rapid Rail Line 3 (DRRL3), the effectiveness of the DTO models are evaluated on a simulation platform, and the performance of the proposed DTO models are compared with both ATO and manual driving strategies. The results indicate that the developed DTO models obtain all the merits of the ATO models and the manual driving. That is, they are better than the ATO models in energy consumption and riding comfort, and also outperform the manual driving in stopping accuracy and punctuality. Additionally, the robustness of the proposed model is verified by a number of experiments with some steep gradients and complex speed limits. (C) 2016 Elsevier Ltd. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
ADVANCED ENGINEERING INFORMATICS
ISSN: 1474-0346
Year: 2016
Issue: 3
Volume: 30
Page: 553-563
2 . 6 8
JCR@2016
8 . 0 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:177
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 25
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: