Indexed by:
Abstract:
A targeting drug delivery system (TDDS) can selectively deliver antitumor drugs to cancerous parts to improve its anticancer efficacy. Hence, a targeted drug delivery system (UA/siVEGF@MSN-FA) coloading ursolic acid (UA) and vascular endothelial growth factor (VEGF) targeted siRNA (siVEGF) based on mesoporous silica (MSN) nanocarrier modified by a folic acid (FA) molecule was designed and synthesized. The MSN-FA nanoparticles were investigated for shape, diameter, and zeta potential and and by infrared (IR) spectroscopy. FR-overexpressing HeLa cells and FR-negative HepG2 cell lines were used to evaluate the in vitro cellular uptake and the cytotoxicity of MSN-FA nanoparticles. The morphology of HeLa cells transfected with siVEGF@MSN-FA was observed using fluorescence microscopy. Our findings demonstrated that UA@MSN-FA nanoparticles were near-spherical, and the particle size was about 209 +/- 9.21 nm. The MSN-FA nanocarrier not only could enhance the in vitro transfection efficiency and the stability of siVEGF but also could further improve the targeted anticancer efficacy of UA and siVEGF via the active targeting property of FA. Overall, the MSN-FA drug delivery system could serve as an excellent material in biomedical applications.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
ISSN: 0021-8561
Year: 2017
Issue: 32
Volume: 65
Page: 6904-6911
3 . 4 1 2
JCR@2017
5 . 7 0 0
JCR@2023
ESI Discipline: AGRICULTURAL SCIENCES;
ESI HC Threshold:157
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 38
SCOPUS Cited Count: 37
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: