Indexed by:
Abstract:
Owing to more vague concepts frequently represented in decision data, intuitionistic fuzzy sets (IFSs) are more fliexibly used to model real-life decision situations. At the same time, with ever increasing complexity in many decision situations in reality, there are often some challenges for a decision maker to provide complete attribute preference information, i.e., the weights may be completely unknown or partially known. The aim of this paper is to develop an effiective method for solving intuitionistic fuzzy multi-attribute decision making (MADM) problems with incomplete weight information. In this method, ratings of alternatives on attributes are expressed with IFSs. The multi-objective programming models are established to calculate unknown weights by using weight information partially known a priori. The derived minimum weighted Minkowski distance power models are used to determine the unknown weights and to generate the ranking order of the alternatives simultaneously. The proposed models are easily extended to intuitionistic fuzzy MADM problems with different weight information structures. An example of the supplier selection problem is examined to demonstrate applicability and flexibility of the proposed models and method.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING
ISSN: 0219-6220
Year: 2017
Issue: 5
Volume: 16
Page: 1387-1408
1 . 7 5 5
JCR@2017
2 . 5 0 0
JCR@2023
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:187
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 17
SCOPUS Cited Count: 38
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: