Indexed by:
Abstract:
Solar-driven water splitting over semiconductor-based photocatalysts provides direct conversion of solar energy to chemical energy, in which electron-hole separation and charge transport are critical for enhancing the photocatalytic activity of semiconducting materials. Moreover, the search for active photocatalysts that efficiently oxidize water remains a challenging task. Here, we demonstrate that a series of Ag3PO4/Ag/graphene/graphitic carbon nitride (g-C3N4) heterostructured materials can drive photocatalytic water oxidation efficiently under LED illumination. The water oxidation behavior of as-prepared composite photocatalysts in relation to the added amount of g-C3N4 and the roles of electron mediators was investigated in detail. Based on the illuminated Z-scheme photocatalytic mechanism, the photogenerated electrons and holes can be separated effectively and the electron-hole recombination of bulk material is suppressed. The reduced metallic Ag nanoparticles were found to function as the center for the accumulation of electrons from Ag3PO4 and holes from g-C3N4. By exploiting the proper addition of g-C3N4 into the composite, photocatalytic oxygen evolution performance over the heterostructured materials could be suitably tuned, which resulted in highly efficient water oxidation. (C) 2017 Elsevier B.V. All rights reserved.
Keyword:
Reprint 's Address:
Version:
Source :
APPLIED SURFACE SCIENCE
ISSN: 0169-4332
Year: 2018
Volume: 430
Page: 108-115
5 . 1 5 5
JCR@2018
6 . 3 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:284
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 89
SCOPUS Cited Count: 92
ESI Highly Cited Papers on the List: 5 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: