Indexed by:
Abstract:
Controllable and precise design of bimetal- or multimetal-semiconductor nanostructures with efficient light absorption, charge separation and utilization is strongly desired for photoredox catalysis applications in solar energy conversion. Taking advantage of Au nanorods, Pt nanoparticles, and CdS as the plasmonic metal, nonplasmonic co-catalyst and semiconductor respectively, we report a steerable approach to engineer the heterointerface of bimetal-semiconductor hybrids. We show that the ingredient composition and spatial distribution between the bimetal and semiconductor significantly influence the redox catalytic activity. CdS deposited anisotropic Pt-tipped Au nanorods, which feature improved light absorption, structure-enhanced electric field distribution and spatially regulated multichannel charge transfer, show distinctly higher photoactivity than blank CdS and other metal-CdS hybrids for simultaneous H-2 and value-added aldehyde production from one redox cycle.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
CHEMICAL SCIENCE
ISSN: 2041-6520
Year: 2019
Issue: 12
Volume: 10
Page: 3514-3522
9 . 3 4 6
JCR@2019
7 . 6 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 86
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: