Indexed by:
Abstract:
This letter addresses the issue of accurate object detection in large-area remote sensing images. Although many convolutional neural network (CNN)-based object detection models can achieve high accuracy in small image patches, the models perform poorly in large-area images due to the large quantity of false and missing detections that arise from complex backgrounds and diverse groundcover types. To address this challenge, this letter proposes a sample update-based CNN (SUCNN) framework for object detection in large-area remote sensing images. The proposed framework contains two stages. In the first stage, a base model-single-shot multibox detector-is trained with the training data set. In the second stage, artificial composite samples are generated to update the training set. The parameters of the first-stage model are fine-tuned with the updated data set to obtain the second-stage model. The first- and second-stage models are evaluated using the large-area remote sensing image test set. Comparison experiments show the effectiveness and superiority of the proposed SUCNN framework for object detection in large-area remote sensing images.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
ISSN: 1545-598X
Year: 2019
Issue: 6
Volume: 16
Page: 947-951
3 . 8 3 3
JCR@2019
4 . 0 0 0
JCR@2023
ESI Discipline: GEOSCIENCES;
ESI HC Threshold:137
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 39
SCOPUS Cited Count: 41
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: