Indexed by:
Abstract:
The purple membrane (PM) isolated from the bacteria Halobacterium salinarum (H. salinarum) arranges the transmembrane proton pump bacteriorhodopsin (bR) in a 2D hexagonal crystalline lattice. Here, PM sheets containing native bR bend into tube-like structures with open edges under acidic pH conditions. When decorated with gold nanoparticles (AuNPs), these same PM sheets yield a sealed tube assembly. Upon Rhodamine B (Rh B) sequestration inside the sealed tube, a dramatic decrease in Rh B fluorescence lifetime (tau(f)) from 1.5 ns (unencapsulated) to 14 ps (encapsulated) is observed. The dramatic decrease in lifetime is attributed to energy transfer between AuNPs and Rh B. Subsequent release from the AuNP-PM capsules triggered by an increase in pH shows that 93% of Rh B is recovered (tau = 14 min) due to the capsules' unfolding. The hybrid AuNP-PM material highlights the utility of multicomponent ensembles (i.e., lipid bilayer, protein array, and NPs) by demonstrating that complex, multistimuli 3D responses can lead to multiplexed functions such as controlling energy transfer in the confined, encapsulated state and breaking the energy pair via molecular release in response to a change in pH.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
ADVANCED FUNCTIONAL MATERIALS
ISSN: 1616-301X
Year: 2019
Issue: 43
Volume: 29
1 6 . 8 3 6
JCR@2019
1 8 . 5 0 0
JCR@2023
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:236
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 8
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: