Indexed by:
Abstract:
Ultrathin Co0.85Se nanosheets were prepared via a facile solvothermal method, which successfully overcome the disadvantage of insufficient active sites in bulk Co0.85Se by reducing its thickness into the atomic scale. Co0.85Se nanosheets have been found to be efficient cocatalysts for photocatalytic CO2 reduction with TON as high as 58 in 1 h reaction under visible-light irradiation. Compared with bulk Co0.85Se blocks, the ultrathin nanosheet samples exhibited nearly 2.5 times higher activity in CO2 photoreduction. The metal-like character and ultrathin 2D structure of Co0.85Se nanosheets support the superb charges transfer and rich CO2 adsorption sites exposure for surface catalysis. A relationship between the surface structure and the cocatalytic activity was established. These results not only demonstrate the potential of a notable, affordable and earth-abundant CO2 photoreduction cocatalyst based on ultrathin Co0.85Se nanosheets but also provide a guidance in the exploration of excellent active and durable cocatalysts/catalysts to replace noble metals for artificial photosynthesis.
Keyword:
Reprint 's Address:
Version:
Source :
CATALYSIS TODAY
ISSN: 0920-5861
Year: 2019
Volume: 335
Page: 208-213
5 . 8 2 5
JCR@2019
5 . 2 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:184
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 49
SCOPUS Cited Count: 50
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: