Indexed by:
Abstract:
The Holliday junction (HJ) is a key intermediate during homologous recombination and DNA double-strand break repair. Timely HJ resolution by resolvases is critical for maintaining genome stability. The mechanisms underlying sequence-specific substrate recognition and cleavage by resolvases remain elusive. The monokaryotic chloroplast 1 protein (MOC1) specifically cleaves four-way DNA junctions in a sequence-specific manner. Here, we report the crystal structures of MOC1 from Zea mays, alone or bound to HJ DNA. MOC1 uses a unique beta-hairpin to embrace the DNA junction. A base-recognition motif specifically interacts with the junction center, inducing base flipping and pseudobase-pair formation at the strand-exchanging points. Structures of MOC1 bound to HJ and different metal ions support a two-metal ion catalysis mechanism. Further molecular dynamics simulations and biochemical analyses reveal a communication between specific substrate recognition and metal ion-dependent catalysis. Our study thus provides a mechanism for how a resolvase turns substrate specificity into catalytic efficiency.
Keyword:
Reprint 's Address:
Version:
Source :
NATURE CHEMICAL BIOLOGY
ISSN: 1552-4450
Year: 2019
Issue: 12
Volume: 15
Page: 1241-,
1 2 . 5 8 7
JCR@2019
1 3 . 0 0 0
JCR@2023
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:189
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 18
SCOPUS Cited Count: 18
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0