Indexed by:
Abstract:
Molybdenum-based co-catalyst decoration is a promising strategy in the construction of an highly efficient photocatalyst composite for hydrogen evolution utilizing sunlight. In this work, a novel MoO2-C/CdS (MOCCS) ternary heterojunction photocatalyst with unique interfacial microstructures has been successfully constructed. The interfacial disordered MoOx regions, which act as the main active sites for photocatalytic water splitting, can be found in the MoO2-C nanocomposites. While for the ternary heterojunction, the direct interfacial Mo-S bonds and metallic Cd can guarantee the high-effect interfacial charge separation and transfer between MoO2-C and CdS nanorods. The as-prepared MOCCS composite shows a remarkable enhancement of photocatalytic H-2 evolution performance (similar to 16.08 mmol.h(-1) g(-1)), which is up to 33 times as high as that of pure CdS nanorods. Photoelectrochemical analyses demonstrate that the synergetic effect of unique interfacial microstructures will result in the efficient separation and reaction of the photocarriers, and the reduced hydrogen overpotential during photocatalytic water splitting process.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
APPLIED CATALYSIS B-ENVIRONMENTAL
ISSN: 0926-3373
Year: 2020
Volume: 260
1 9 . 5 0 3
JCR@2020
2 0 . 3 0 0
JCR@2023
ESI Discipline: CHEMISTRY;
ESI HC Threshold:160
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 99
SCOPUS Cited Count: 101
ESI Highly Cited Papers on the List: 14 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 2
Affiliated Colleges: