Indexed by:
Abstract:
In this paper, we investigate the sparse group feature selection problem, in which covariates posses a grouping structure sparsity at the level of both features and groups simultaneously. We reformulate the feature sparsity constraint as an equivalent weighted l1-norm constraint in the sparse group optimization problem. To solve the reformulated problem, we first propose a weighted thresholding method based on a dynamic programming algorithm. Then we improve the method to a weighted thresholding homotopy algorithm using homotopy technique. We prove that the algorithm converges to an L-stationary point of the original problem. Computational experiments on synthetic data show that the proposed algorithm is competitive with some state-of-the-art algorithms.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE ACCESS
ISSN: 2169-3536
Year: 2020
Volume: 8
Page: 20700-20707
3 . 3 6 7
JCR@2020
3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: