Indexed by:
Abstract:
Unmanned aerial manipulator (UAM) is usually a combination of a quadrotor and a robotic arm that can exert active influences on the environments. The control problems of the UAM system include model uncertainty caused by its center of gravity shift and external disturbances from the environments. To handle these two disturbances, a tracking control strategy is proposed for position and attitude control of the UAM in this paper. In particular, the model of the UAM is established considering with center of gravity shift and disturbances from environments. In the position control, both internal disturbances and external disturbances are compensated by using a sliding mode controller. In the attitude control, an adaptive law is designed to estimate internal disturbances, and a disturbance observer is designed to estimate external disturbances. The stability analysis of the proposed controller is provided and the effectiveness of the proposed method is verified in simulation.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
IEEE ACCESS
ISSN: 2169-3536
Year: 2020
Volume: 8
Page: 129869-129877
3 . 3 6 7
JCR@2020
3 . 4 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:2
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: