• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
成果搜索

author:

Zhang, Zhizhong (Zhang, Zhizhong.) [1] | Du, Heng (Du, Heng.) [2] (Scholars:杜恒) | Chen, Shumei (Chen, Shumei.) [3] (Scholars:陈淑梅) | Huang, Hui (Huang, Hui.) [4]

Indexed by:

EI Scopus SCIE

Abstract:

The electro-hydraulic servo steering system is one of the core components of a heavy vehicle, and frequency response characteristics of this system are essential to guarantee the vehicle flexibility. However, it is difficult to establish frequency domain model directly for the frequency response characteristics analysis due to the strong nonlinearity of steering trapezoidal mechanism and hydraulic power system in electro-hydraulic servo steering system. This paper proposes a simplified linearization analysis method for the electro-hydraulic servo steering system. By variable substitution defining the load flow and load pressure, and linear fit between double tire angles and cylinder displacement, the original model is simplified to a frequency domain model. Based on this model, the essential frequency response characteristics and the effects of key parameters to electro-hydraulic servo steering system can be obtained. Through the sweep frequency response analysis, the linearized frequency domain model is compared with the nonlinear time domain model and the actual test system, respectively. As shown in Bode plots, the amplitude-frequency phase-frequency characteristic curves of models match well, which verifies linearization analysis method and linear frequency domain model. The key parameters affecting the system frequency domain characteristics are the valve flow gain, the area of cylinder rodless and rod chamber, and the linearization coefficient between the left and right tire angles and so on. The electro-hydraulic servo steering system bandwidth is only 7.38 rad/s (1.17 Hz). This research is helpful for the design and optimization of heavy vehicle dynamic steering system.

Keyword:

electro-hydraulic servo steering system (EHSSS) frequency domain analysis Heavy vehicle linearization sweep frequency response analysis (SFRA)

Community:

  • [ 1 ] [Zhang, Zhizhong]Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
  • [ 2 ] [Du, Heng]Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
  • [ 3 ] [Chen, Shumei]Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
  • [ 4 ] [Huang, Hui]Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China
  • [ 5 ] [Zhang, Zhizhong]Fujian Prov Univ, Fuzhou Univ, Key Lab Fluid Power & Intelligent Electrohydraul, Fuzhou, Peoples R China
  • [ 6 ] [Du, Heng]Fujian Prov Univ, Fuzhou Univ, Key Lab Fluid Power & Intelligent Electrohydraul, Fuzhou, Peoples R China
  • [ 7 ] [Chen, Shumei]Fujian Prov Univ, Fuzhou Univ, Key Lab Fluid Power & Intelligent Electrohydraul, Fuzhou, Peoples R China
  • [ 8 ] [Huang, Hui]Fujian Prov Univ, Fuzhou Univ, Key Lab Fluid Power & Intelligent Electrohydraul, Fuzhou, Peoples R China

Reprint 's Address:

  • 杜恒

    [Du, Heng]Fuzhou Univ, Sch Mech Engn & Automat, Fuzhou 350108, Peoples R China

Show more details

Version:

Related Keywords:

Related Article:

Source :

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING

ISSN: 0954-4070

Year: 2020

Issue: 12

Volume: 234

Page: 2836-2850

1 . 4 8 4

JCR@2020

1 . 5 0 0

JCR@2023

ESI Discipline: ENGINEERING;

ESI HC Threshold:132

JCR Journal Grade:4

CAS Journal Grade:4

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Online/Total:111/10119416
Address:FZU Library(No.2 Xuyuan Road, Fuzhou, Fujian, PRC Post Code:350116) Contact Us:0591-22865326
Copyright:FZU Library Technical Support:Beijing Aegean Software Co., Ltd. 闽ICP备05005463号-1