Indexed by:
Abstract:
Freak wave is an extreme sea state with unexpected and huge wave height, which becomes a potential risk for lay barge and offshore pipeline during deepwater installation. In order to investigate the dynamic responses of deepwater S-lay pipeline induced by freak waves, this study developed a comprehensive numerical model with the particular consideration of the freak wave effect. An enhanced superposition method of combined transient wave trains and random wave trains was presented, and a series of freak wave trains were generated. The induced pipelay vessel motions were simulated by the use of displacement response amplitude operators (RAOs). The pipe-stinger roller interactions in the overbend and the cyclic contacts between the pipeline and seabed soil in the touchdown zone (TDZ) were fully taken into consideration. The developed S-lay model was subsequently utilized to calculate the dynamic responses of the pipelay vessel and offshore pipeline under random waves and freak waves for a comparison. The results illustrated the remarkable influence of freak waves on the systematic behaviors of deepwater S-laying pipeline, which offer a significant theoretical basis for the pipe structure design and pipelay operation safety.
Keyword:
Reprint 's Address:
Email:
Source :
JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME
ISSN: 0892-7219
Year: 2020
Issue: 4
Volume: 142
1 . 3 5 5
JCR@2020
1 . 3 0 0
JCR@2023
ESI Discipline: ENGINEERING;
ESI HC Threshold:132
JCR Journal Grade:3
CAS Journal Grade:4
Cited Count:
WoS CC Cited Count: 5
SCOPUS Cited Count: 5
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: