Abstract:
山区流域洪水具有突发性强、预见期短的特点,快速准确进行洪水预报始终是防汛工作的关键问题。以长短时记忆深度学习神经网络技术为基础,选取崇阳溪流域1997年到2022年共30场暴雨洪水过程作为研究数据,将其中21场洪水作为训练集,以上游吴边等6个雨量站的逐时雨量、武夷山站控制断面前期流量为模型输入,武夷山站控制断面相应洪水流量为模型输出,采用均方根误差最小准则分析确定LSTM隐含层单元数和网络迭代轮数,同时在LSTM层之后设置一个全连接层,并对全连接层进行dropout处理,建立具有时间序列记忆功能的山区流域LSTM神经网络模型。运用该模型对余下的9场洪水进行测试,并与LMBP模型进行对比。结果表明:LSTM模型预测精度较高,在洪水过程、洪峰流量和洪峰出现时间预测方面精度高于LMBP模型,适用于山区流域洪水预报。
Keyword:
Reprint 's Address:
Email:
Source :
西南大学学报(自然科学版)
Year: 2025
Issue: 05
Volume: 47
Page: 177-187
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: