Indexed by:
Abstract:
如何从土木结构响应数据中挖掘损伤特征并有效分类,是实现损伤模式识别的关键.为此,以框架结构为分析对象,搭建设有自编码器隐藏层和Softmax分类层的栈式自编码器网络,采用无监督联合有监督的混合学习机制;基于有限元分析获取框架不同工况下的传递比函数值,构建训练集、验证集和测试集样本;通过预训练确定自编码器隐藏层的参数值如权重和偏置值,避免网络出现过拟合;采用微调方式进一步调整预训练后的网络参数值,再结合验证集实现对网络超参数的调整;将实测传递比数据输入网络,实现对框架节点损伤的评估.结果表明:所提方法能有效进行损伤特征的提取和分类,准确识别框架节点的单、双损伤工况,相较于传统浅层神经网络具有更高的识别准确度和更好的抗噪性.
Keyword:
Reprint 's Address:
Email:
Version:
Source :
振动工程学报
ISSN: 1004-4523
Year: 2024
Issue: 9
Volume: 37
Page: 1460-1467
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: