文献推荐换一换

找到722条相关结果

PPRD-FL: Privacy-Preserving Federated Learning Based on Randomized Parameter Selection and Dynamic Local Differential Privacy

As traditional federated learning algorithms often fall short in providing privacy protection, a growing body of research integrates local differential privacy methods into federated learning to strengthen privacy guarantees. However,...
J FengR GuoJ Zhu  -  《Electronics》  -  被引量:  0  -  2025年

Fed-MPS: Federated learning with local differential privacy using model parameter selection for resource-constrained CPS

Fed-MPS: Federated learning with local differential privacy using model parameter selection for resource-constrained CPSdoi:10.1016/j.sysarc.2024.103108...
S JiangX WangY Que , ... -  《Journal of Syste...  -  被引量:  0  -  2024年

FedMPS: A Robust Differential Privacy Federated Learning Based on Local Model Partition and Sparsification for Heterogeneous IIoT Data

In the emerging Industrial Internet of Things (IIoT) applications, federated learning (FL) enables model training without the need to transmit raw data ...
D WangY GaoS Pang , ... -  《IEEE Internet of...  -  被引量:  0

Federated Learning With Sparsified Model Perturbation: Improving Accuracy Under Client-Level Differential Privacy

Federated learning (FL) that enables edge devices to collaboratively learn a shared model while keeping their training data locally has received great a...
R HuY GuoY Gong  -  《Mobile Computing...  -  被引量:  0  -  2024年

Providing Differential Privacy for Federated Learning Over Wireless: A Cross-layer Framework

Federated Learning (FL) is a distributed machine learning framework that inherently allows edge devices to maintain their local training data, thus prov...
J MaoT YinA Yener , ... -  被引量:  0  -  2024年

Local differential privacy federated learning based on heterogeneous data multi-privacy mechanism

Federated learning enables the development of robust models without accessing users data directly. However, recent studies indicate that federated learn...
J WangZ ZhangJ Tian , ... -  《Computer Networks》  -  被引量:  0  -  2024年

DP-Poison: Poisoning Federated Learning under the Cover of Differential Privacy

Federated learning (FL) enables resource-constrained node devices to learn a shared model while keeping the training data local. Since recent research h...
H ZhengJ ChenT Liu , ... -  《Acm Transactions...  -  被引量:  0  -  2025年

Federated transfer learning with differential privacy for multi-omics survival analysis

Multi-omics data often suffer from the "big p , small n " problem where the dimensionality of features is significantly larger than the sample size, ma...
G WenL Li  -  《Briefings in Bio...  -  被引量:  0  -  2025年

[专利]  FEDERATED LEARNING SYSTEM AND METHOD WITH ADAPTIVE NOISE AND DIFFERENTIAL PRIVACY

A wireless communication network method and system that includes a central server, cellular base stations, edge computing devices, and client devices. T...
AK AbasiM AloqailyM Guizani  -  被引量:  0  -  2025年

Evaluating the Impact of Mobility on Differentially Private Federated Learning

This paper investigates differential privacy in federated learning. This topic has been actively examined in conventional network environments, but few ...
EJ KimEK Lee  -  Applied Sciences ...  -  被引量:  0  -  2024年

1 2 3 4 5 6 7 8

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

添加订阅

全部
北大核心期刊
SCI索引
EI索引
SCIE索引
SSCI索引
CSCD索引
中国科技核心期刊
CSSCI索引
其他

抱歉,没有找到与 应用数学 相关的学术期刊

抱歉,未搜索到任何学者,请尝试其他搜索

引用