Indexed by:
Abstract:
As an internal modification of transcripts, RNA methylation determines RNA fate by changing RNA-protein binding affinity. In plants, RNA methylation is ubiquitous and is involved in all aspects of RNA post-transcriptional regulation. For instance, long-distance mobile RNAs, strongly influenced by their methylation status, play important roles in plant growth, development and environmental adaptation. Cucumber/ pumpkin heterografts are widely used to improve stress tolerance of cucumber and to study mobile RNA signals due to their strong developed vasculature system. Here, we developed the Cucume (Cucurbit RNA methylation, http://cucume.cn/) database for these two important vegetables, cucumber (Cucumis sativus L.) and pumpkin (Cucurbita moschata) with high productivity worldwide. We identified mRNAs harboring 5methylcytosine (m5C) and N6-methyladenosine (m6A) sites in pumpkin and cucumber at the whole genome level via Methylated RNA Immunoprecipitation sequencing (MeRIP-seq) of different tissues and the vascular exudates. In addition to RNA methylation sites, the Cucume database includes graft-transmissible systemic mRNAs identified in previous studies using cucumber/pumpkin heterografts. The further integration of cucumber genome-wide association analysis (GWAS) and quantitative trait loci (QTL) allows the study of RNA methylation-related genetic and epigenetic regulation in cucurbits. Therefore, the here developed Cucume database will promote understanding the role of cucurbit RNA methylation in RNA mobility and QTL, ultimately benefitting future breeding of agronomic crop germplasms.(c) 2023 China Agricultural University. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Keyword:
Reprint 's Address:
Email:
Version:
Source :
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL
ISSN: 2001-0370
Year: 2023
Volume: 21
Page: 837-846
4 . 5
JCR@2023
4 . 5 0 0
JCR@2023
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:30
JCR Journal Grade:1
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: